Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
2.
Mem Inst Oswaldo Cruz ; 118: e230081, 2023.
Article in English | MEDLINE | ID: mdl-37909500

ABSTRACT

BACKGROUND: Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES: This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS: Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS: The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS: An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.


Subject(s)
Anti-Bacterial Agents , Klebsiella Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Klebsiella pneumoniae/genetics , Brazil , beta-Lactamases/genetics , Multilocus Sequence Typing , Microbial Sensitivity Tests
3.
J Glob Antimicrob Resist ; 34: 91-98, 2023 09.
Article in English | MEDLINE | ID: mdl-37419183

ABSTRACT

OBJECTIVES: Among the high-risk clones of Acinetobacter baumannii, called international clones (ICs), IC2 represents the main lineage causing outbreaks worldwide. Despite the successful global spread of IC2, the occurrence of IC2 is rarely reported in Latin America. Here, we aimed to evaluate the susceptibility and genetic relatedness of isolates from a nosocomial outbreak in Rio de Janeiro/Brazil (2022) and perform genomic epidemiology analyses of the available genomes of A. baumannii. METHODS: Sixteen strains of A. baumannii were subjected to antimicrobial susceptibility tests and genome sequencing. These genomes were compared phylogenetically with other IC2 genomes from the NCBI database, and virulence and antibiotic resistance genes were searched. RESULTS: The 16 strains represented carbapenem-resistant A. baumannii (CRAB) with an extensively drug-resistant profile. In silico analysis established the relationship between the Brazilian CRAB genomes and IC2/ST2 genomes in the world. The Brazilian strains belonged to three sub-lineages, associated with genomes from countries in Europe, North America, and Asia. These sub-lineages presented three distinct capsules, KL7, KL9, and KL56. The Brazilian strains were characterised by the co-presence of blaOXA-23 and blaOXA-66, in addition to the genes APH(6), APH(3"), ANT(3"), AAC(6'), armA, and the efflux pumps adeABC and adeIJK. A large set of virulence genes was also identified: adeFGH/efflux pump; the siderophores barAB, basABCDFGHIJ, and bauBCDEF; lpxABCDLM/capsule; tssABCDEFGIKLM/T6SS; and pgaABCD/biofilm. CONCLUSION: Widespread extensively drug-resistant CRAB IC2/ST2 is currently causing outbreaks in clinical settings in southeastern Brazil. This is due to at least three sub-lineages characterised by an enormous apparatus of virulence and resistance to antibiotics, both intrinsic and mobile.


Subject(s)
Acinetobacter baumannii , Carbapenems , Brazil/epidemiology , beta-Lactamases/genetics , Interleukin-1 Receptor-Like 1 Protein , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Outbreaks , Acinetobacter baumannii/genetics
5.
Mem. Inst. Oswaldo Cruz ; 118: e230081, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1521243

ABSTRACT

BACKGROUND Pandrug-resistant (PDR) Klebsiella pneumoniae has been reported sporadically in many countries and remains rare in Brazil. OBJECTIVES This study unravelled the genetic determinants involved with the PDR background of a clinical ST11 K. pneumoniae recovered in the Brazilian Amazon Region, where K. pneumoniae genomic and epidemiological information is scarce. METHODS Kp196 was submitted to the antimicrobial susceptibility test by the disk-diffusion method and minimum inhibitory concentration (MIC) determination. The whole genome sequencing was obtained and the sequence type was determined by core genome multilocus sequence typing (cgMLST). Its intrinsic and acquired resistome was assessed by Comprehensive Antibiotic Resistance Database (CARD) and comparison with wild-type genes. FINDINGS The analyses revealed that Kp196 belonged to the pandemic ST11 and presented the PDR phenotype. Its acquired resistome was composed of a huge set of clinically relevant resistance determinants, including bla CTX-M-15 and bla NDM-1, all found in the vicinity of mobile platforms. Considering its intrinsic resistome, the multidrug resistance, especially to colistin, tigecycline and fluoroquinolones, was multifactorial and attributed to modifications (indels, missense mutations, and gene disruption) in several housekeeping genes (arnT/phoQ/mgrB/ramR/acrB/gyrA/parC/ompK35-36-37). The Kp196 intrinsic resistome was also observed in a ST11 environmental strain, although harbouring distinct acquired resistomes. CONCLUSIONS An accumulation of different resistance mechanisms regarding the intrinsic resistome accounts for a more stable resistome, strongly contributing to the Kp196 PDR phenotype.

6.
Microorganisms ; 10(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36557735

ABSTRACT

BACKGROUND: Most of the extraintestinal human infections worldwide are caused by specific extraintestinal pathogenic Escherichia coli (ExPEC) lineages, which also present a zoonotic character. One of these lineages belongs to ST38, a high-risk globally disseminated ExPEC. To get insights on the aspects of the global ST38 epidemiology and evolution as a multidrug-resistant and pathogenic lineage concerning the three axes of the One Health concept (humans, animals, and natural environments), this study performed a global phylogenomic analysis on ST38 genomes. METHODS: A phylogenetic reconstruction based on 376 ST38 genomes recovered from environments, humans, livestock, and wild and domestic animals in all continents throughout three decades was performed. The global information concerning the ST38 resistome and virulome was also approached by in silico analyses. RESULTS: In general, the phylogenomic analyses corroborated the zoonotic character of the ExPEC ST38, since clonal strains were recovered from both animal and human sources distributed worldwide. Moreover, our findings revealed that, independent of host sources and geographic origin, the genomes were distributed in two major clades (Clades 1 and 2). However, the ST38 accessory genome was not strictly associated with clades and sub-clades, as found for the type 2 T3SS ETT2 that was evenly distributed throughout Clades 1 and 2. Of note was the presence of the Yersinia pestis-like high-pathogenicity island (HPI) exclusively in the major Clade 2, in which prevails most of the genomes from human origin recovered worldwide (2000 to 2020). CONCLUSIONS: This evidence corroborates the HPI association with successful E. coli ST38 establishment in human infections.

7.
Int J Antimicrob Agents ; 59(2): 106507, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34958864

ABSTRACT

Pseudomonas aeruginosa is considered a top priority pathogen associated with elevated morbidity and mortality. Worldwide outbreaks have been associated with a few high-risk epidemic P. aeruginosa lineages. However, the biological features involved in the persistence and spread of such lineages in clinical settings remain to be unravelled. This study reports the emergence of an extensively drug-resistant (XDR) sequence type 309 (ST309) P. aeruginosa in South America (Brazil), specifically in the Amazon region. Genomic analyses were performed with 42 complete and draft ST309 genomes, giving insights into its epidemiology, resistome and mobilome. A heterogeneous distribution of acquired antimicrobial resistance genes among ST309 genomes was observed, which included blaVIM-2, blaIMP-15 and qnrVC1, all associated with class 1 integrons. Mobilome mining showed the presence of integrative and conjugative elements (ICEs), transposons and genomic islands (GIs) harbouring a huge arsenal of heavy metal resistance determinants, which probably provided adaptive advantages to the ST309 lineage.


Subject(s)
Pseudomonas Infections , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Brazil/epidemiology , Drug Resistance, Multiple, Bacterial/genetics , Genomics , Humans , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/genetics , beta-Lactamases/genetics
8.
J Glob Antimicrob Resist ; 20: 18-21, 2020 03.
Article in English | MEDLINE | ID: mdl-31252155

ABSTRACT

OBJECTIVES: The extensively drug-resistant (XDR) Acinetobacter baumannii international clone VI (IC-6) has been identified worldwide since 2006. This study reports the emergence of IC-6 in the Brazilian Amazon region and reveals the particular genomic features considering its mobilome and resistome. METHODS: A total of 32 carbapenem-resistant A. baumannii strains recovered from Boa Vista city (Roraima, Brazil) in 2016 were characterised by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The whole genome sequences of the Brazilian IC-6 strains were obtained. The mobilome and resistome were assessed by in silico analyses. RESULTS: PFGE and MLST demonstrated that the 32 A. baumannii strains belonged to four clones. One XDR clone corresponded to the high-risk pandemic IC-6 lineage from ST944Oxf/78Pas. The IC-6 resistome was composed of aadA5, aac(3'')-IIa, aph(3')-Ia, armA, aadB, msrE, blaTEM-1, IS15DIV-blaCTX-M-115-IS15DIV, blaOXA-90, ISAba1-blaADC-152, blaOXA-72, qacEΔ1 and sul1. Mobilome prediction revealed that blaOXA-72 was embedded in a 15.5-kb plasmid and that it was flanked by putative XerC/D-binding sites, possibly involved in blaOXA-72 mobilisation. Several resistance genes were in a 48-kb multidrug resistance genomic island inserted in the chromosome, which also harboured genes involved in host pathogenicity and adaptive traits. Interestingly, the Brazilian strains shared the blaOXA-72 and blaCTX-M-115 with IC-6/ST944Oxf/78Pas recovered in a distinct spatiotemporal context, pointing to an epidemiological link among them. CONCLUSION: This study highlights the importance of surveillance of XDR A. baumannii strains, even outside of densely populated cosmopolitan regions, to reveal the epidemiology of pandemic lineages, stressing their threat to public health.


Subject(s)
Acinetobacter Infections/epidemiology , Acinetobacter baumannii/classification , Whole Genome Sequencing/methods , beta-Lactamases/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/genetics , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Brazil/epidemiology , Chromosomes, Bacterial/genetics , Drug Resistance, Multiple, Bacterial , Electrophoresis, Gel, Pulsed-Field , Evolution, Molecular , High-Throughput Nucleotide Sequencing , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Phylogeny , Plasmids/genetics , Population Surveillance
9.
Front Microbiol ; 9: 1042, 2018.
Article in English | MEDLINE | ID: mdl-29867913

ABSTRACT

tRNA array unit, a genomic region presenting an intriguing high tRNA gene number and density, was supposed to occur only in few bacteria phyla, particularly Firmicutes. Here, we identified and characterized an abundance and diversity of tRNA array units in Mycobacterium associated genomes. These genomes comprised chromosome, bacteriophages and plasmids from mycobacteria. Firstly, we had identified 32 tRNA genes organized in an array unit within a mycobacteria plasmid genome and therefore, we hypothesized the presence of such structures in Mycobacterium genus. However, at the time, bioinformatics tools only predict tRNA genes, not characterizing their arrangement as arrays. In order to test our hypothesis, we developed and applied an in-house Perl script that identified tRNA genes organization as an array unit. This survey included a total of 7,670 complete and drafts genomes of Mycobacterium genus, 4312 mycobacteriophage genomes and 40 mycobacteria plasmids. We showed that tRNA array units are abundant in genomes associated to the Mycobacterium genus, mainly in Mycobacterium abscessus complex species, being spread in chromosome, prophage, and plasmid genomes. Moreover, other non-coding RNA species (tmRNA and structured RNA) were also identified in these regions. Our results revealed that tRNA array units are not restrict, as previously assumed, to few bacteria phyla and genomes being present in one of the most diverse bacteria genus. We also provide a bioinformatics tool that allows further exploration of this issue in huge genomic databases. The presence of tRNA array units in plasmids and bacteriophages, associated with horizontal gene transfer, and in a bacteria genus that explores diverse niches, are indicatives that tRNA array units have impact in the bacteria biology.

SELECTION OF CITATIONS
SEARCH DETAIL
...